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We study some three-dimensional gas flows near the characteristic surface extended over 
a homogeneous polytropic gas at rest. 

Flows originating near the characteristic snrfacs of arbitrary form axtsnded over the 
gas at rest, were studied for the plane problems in [I], including the case when the inter- 
face of the pertarhed region and the region at rest, was found to be a surface of weak dis- 
continuity of the basic gasdynamic quantities. 

Below we consider, in addition to the case of a weak dfscontfnaity, the case when the 
characteristic surface is a surface of strong discontinuity. This corresponds to the propaga- 
tion of normal detonation waves (the Chapman - Jouguet conditfon holda at the wafe front). 

Solutions are constructed using the class of threedimensfonal potential dooble waves 
whose equations were first obtafned fn [2]. Using the doable waves we can only deal with 
the case when the characteristic surface will, at any instant t, be a developable s&ace 
(s) in the physical (xl, q, x,)-space (obvfonsly the plane case is included completely, 
without any restrfctions imposed on the form of the surface). 

Generally speaking, we can constmct, for a given characterb tic sorface, an infinite set 
of flows in its vicinity. We settle the problem of inclusion of the double wave flows into the 
class of arbitrary, soffidently smooth flows corresponding to a gfven characteristic sarface. 
For this pnrpose we derive and solve the transfer equatfon for the dfscontinnities of normal 
derivatives of the basic fnnctions, which holds along any characteristic lying on the chart 
acterfstic surface. 

We also show, that for saffioiently long periods of time, the flow near an arbitrary 
characterfstic snrfaoe (s) can approxfmately be regarded as a double wave. 

This is valid for both, the sarface of weak discontinaity (S) and for the flow behind a 
normal detonation wave. 

1. Equations of three-dfmensional donble waves cau be written in the hodograph plane 
of velocities u1 and aa as [2 and 31: 

RIIY~, - 2R,,Y1r + R,,Y~I = 0 (1.1) 

41 (r,, + 1 + Y’,? - 2R,, (r12 + Y,YJ -f-R,, (rll -j- 1 -; Y12) := 0 

41 L - 2% L + 4, x,, = 0 

u, = y (u1, ua), r (qr u2) = xc2, x = l/ (y - 1) 

where y is the speciffc heat ratio, e is the docity of sonnd, X fut, 4) is the distrfbation 
function and 
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the l obscriptn accompanying y, r and X denote differentiation with respect to a1 and ui, 
aad 8 k is the Kronecker delta. 

If the function \Y, r and X are known, a flow in the physical (x1, 3, x,)-space can be 
found from 

(i = 1,‘z) (1.3) 

Introducing polar coordinates t and cp (ul = r COS q, U2 = r Sin Cp) , we can 

write (1.1) in the form 

which in more Baitable for investigating the behavior of the flows defined by (l.l), at the 
boandary of the region of rent (uf = 0, i = 1, 2, 3). 

Let ue take the velocity of mound in the unperturbed gas as unit velocity. In [4], three- 
dimensional double wavea were aged to conetmct flows behind the normal detonation and 
dock raven of constant intendty, Boundary valoe problems were stated and distinct 
l ohtions l todied. W~Q investigating the conditions on the line r = 0 for the system (1.4) 
whiuh uime in the problem on the adjacency of the double wave to the region of rest we 
ahall use, in addition to the reaalta of [4], the following theaem. 

Thonm. Inmtantaneoua atream linen of i perturbed flow are, at any instant, orthogonal 
to the weak dkoontinnity marface over the gas at rest. 

Thio theorem was proved for the plane case in [II and it can be easily extended to the 
threedfmenmional cue neing the kinemetic conditiona of compatibility on a weak die- 
contimity. Using thim theorem and performing on r and cp the opemtionn analogoan to those 
performed in [l md 41 when investigating the flows behind a shock wave, we find that the 
conditione 

Y =o, Yyo = 0, yr = P cd 
r =x, r. =o, rr = v (9) 
x = 0, x, = 0, xr = h 649 

v2 (cp) = 1 + CL” (cp) 

sheuld hold on the line r - 0. 
Cenditlon (1.6) La obtained on pauing to the limit as r + 0 in 



which waa obtafned in [a] and which aorraaponda to the fact that the normal velocity of 
propagation of a weak discontinuity ia conatent. Equationa of motion of a weak diaconti- 
unity can be obtained from (1.3) by putting t = 0, and are 

(1.7) 

x1 = h co9 g, - h’sin cp - (p co.9 cp - p’sin cp) 2, + (v co9 cp - v’sin cp)t 

x2 = h sin cp + 3L’ co9 cp - (p sin cp + p’ co9 cp) 2, + (v sin cp + v’ Co9 (p) t 

Combining the conditions of the developability of a ruled surface given by (1.7) in the 
fxt, p, x&apace we have, at any instant t = k, 

-pcostpf p’sincp -(psinq+p’cos cp) i 

ain V (IL” + IL) - o*a cp (i”” + I’) 0 0 

I 

= 

- sin9 [h” + h + (v” + v) to] cos cp [h” + h + (v” + Y) to] 0 

Thus we see that the surface of a weak dtcontinaity behind which the,flow is a 
double wave, can only be a developtable surface. The functions A (cp) and ~1 ((p) are 
arbitrary and can be uasd to specify, at any instant, an arbitrary developable surface as 
the surface of weak discontinuity. The values p = 0 and u = f 1 correspond to the plane 
case studied iu [I]. 

Continuing our investigation of the problems posed for the system (1.4) with the 
initial conditions (1.5) on the line r = 0, we shall assume that the fanctiona ‘il and r have 
continuous fourth order mixed derfvativea eontafning second order derivativea with reapact 
to r audat‘in any order. Thia eaamnpdon ia eaaential, and this property of \It and r is 
menifes& a number of real flowa, e.g. (see also [l], in a aelf-aimilar flow occurring 
behind a conical normal detonation wave g-stated by a point source moving with constant 
velocity. This flow waa first investigated in [S] where it waa found that a self-similar 
double wave adjoins, through a wesk diacontinaity, the region of a homogeneoua gas 
moving with constant velocity. 

Note. Obviously, all the reaulta formulated for the flows adjacent to the region of 
rest through a weak discontinuity remain valid when the region of reat is replacad by the 
region of uniform motion. 

Using the previous aaaumptions we can mite g! and r aa 

Y = qt + ‘lz f2Y,r (% cp) fOf;rJt\(r) 

r = x + m + ‘I% rurFt (Q?, 0) (O<rrBr) 
(1.8) 

and obtain similar expressions for YF, Ye, rr, and rv. These, together with (1.61, 
yield the following expressiona for the coefficients of (1.4) 

-~+~+~y~=-v~~~1+P’2$O(r) rTz 

rrr, - f Y,Yp = 0 (P) (1.9) 

- r? + ; + ; y,z. = F (- 2Vrrr (rr*, Cp) -t- 2@$&*., Cp) + ;) + 0 (r’) 

(O<r$<r, O,<r*+<r) 

r,yY, - r,Y,. = F (VP' - P’) + 0 V) 
Multipl~g ell Eqa. of (1.4) by r and using (1.9) we haily see, that all coefficients 

of the second order derivatives in the new ayatem are continuous et r = 0, and the 
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coefficients of the second order derivatives with respect to Cp are of the order 0 (1). The 
line I = 0 will represent, for this system, a line of parabolic degeneracy and it will, in 
addition, be a characteristic. 

The system (1.4) is nonlinear and the theorems of existence and uniqueness of 
solution of the problem when the initial conditions are given on the characteristic line of 
parabolicity, are only known for some linear systems in both, hyperbolic and elliptic cases. 
Bere we shall attempt to obtain, within the assumptions made, approximate represeutations 
of the fnnctiona \v and r, a simplified equation for X and to investigate the problems withfor 
given initial conditions for this equation. Solving the obtained equation we can obtain an 
approximate expression for X. Moreover, this equation can be used as a model in solving 
the problems for (1.4). In the hyperbolic case it cart be shown to possess a solution, Both, 
the system (1.4) near r = 0 and the equation for X, are of the same form since the coef- 
ficients accompanying the second derivatives are the same in all Eqs. of (1.4). 

Let us find approximate expressions for q and r. Using the relations (1.9) following 
from the continuity of Yy,,,,, and rVrVq, and the estimates 

Y’, yrs - -r -= O(r), rtp -+o(r), + I pv = O(r), 
I‘. 

1D = VW+ O(r) 
r 

obtained from the first two Eqa. of (1.4) bv retaining in them the terms of the order 0 (1) 
we obtain, for Y,., (0, (p) and r,, (0, cp), the following system of eqnations 

‘l”,,(@,(p)(-v’“-t p’“+ 1) + (p”+ p)(-2vr,,(o, 0) + 21tY’rr(% tp) -!- v3/x)=0 

rrr (0, rp) (-v-i p’” + If + (v” + v) (4w,, (0, rp> + 2PYF, (0, qJ) t v3 f x) - 
- y: -- y’2 + 2 fy2 + p’s) - (y&f - f&Y’)2 zzz 0 (1.10) 

which yield the following approximate expressions for ‘tv and r at small r: 

(1.11) 

(we note that the third order derivatives with respect to r, if they exist, cannot, in general, 
be determined uniquely [I]). 

Assuming that X is twice continuously differantieble in r and Cp at small r and using 
(I.91 and (1.5) together with the expressions for Y,, (0, (p) and rrr (0, cp), we obtain 
the following approximate expression for X : 

(1.12) 

The sign of V (0) determines the type of this equation. Thus, if the density in the 
perturbed flow increases witb increasing distance from the weak discontinuity Eq. (1.12) 
is hyperbolic for r > 0 (this occnrs e.g. near a weak shock expanding behind a normal de- 
tonation wave). If, on the other hand, the density decreases (as it happens in a rarefaction 
wave), then (1.12) is elliptic for r > 0. In the plane case (jt = 0. v = f 1) (1.12) becomes 

r- s,, * (y j- 1) (X,, -+- I‘ S,) == 0 (1.13) 

In the earlier work [l] we have investigated problems for (1.13) with initial conditions 
(1.5). using the theorems given in [6 and 71. We can apply the same procedure to (1.12) 
after reducing it to its canonical form. Suppose, that in the hyperbolic case we have 



~h~~u~irn~na~nal gas flowr adjacent to regions oftctr 375 

along the segment MN lying on the axis r = 0. Then a unique, twice continuously diffcrenti- 
able in r and (r solution of the stated problem exists in the region bounded by the character- 
istics of two families 

passing through M and N. provided that h (q~) has four continuous derivatives. In the el- 
liptic case the statement of the problem is incorrect in the classical sense, and various 
regularizing methods [I] can be employed to obtain its solution. 

When Y and r depend only on t (u and p are constant and the flow is steady), Foarft~s 
method can be used to solve (1.12). The following approximate expression can be derived 
for the general case, at small t: 

(1.15) 

(Expression for xrr (0, rp) is obtained analogously to those for Y,.r (0, cp), and 

rrr (0, q)). Having found X in the small neighborhood of r = 0. Ar = h < 1, we can solve 

(1.12) in the hyperbolic region using the method of characteristics. 
Thus the clese of three-dimensional double waves allows the construction of some 

solutions of gasdynamic equations in the vicinity of a weak shock, provided that this shock 
is, for any t, a developable surface. 

2. In the following, an essential part will be played by the transport equation of the 
discontinuities of the directional derivatives of the functions u. and C, viz. [ujQ], and 
[co] along any bicharacteristic lying on the characteristic surface 

@ (x1, x2, x3) =: t (2.1) 

ln the plane case when the surface @ (x1, z,) = t is a surface of a weak shock propagat- 
ing through au unperturbed gas with the velocity of sound, the transport equation is derived 
and investigated in [I] ([9] indicates the possibility of obtaining such an equation; in the 
case of a two-dimensional flow the transport equation for the diecontinuities of dedvatives 
along the characteristics was studied in detail in [IO] ). 

In the following we shall assume that the characteristic surface (2.1) propagates with 
a normal velocity I) uniform with respect to a fixed coordinate system (velocity of propaga- 
tion relative to the gas is equal to the velocity of sound c; if on (2.1) 1~1 = 0, i.e. a weak 
shock moves through the region of rest, we have D = c ). Moreover we shall assume that the 
velocity of sound, and hence the density, are constant on the characteristic surface, and the 
velocity vector U is always orthogonal to the surface and its modulus is constant. These 
assumptions allow us to include in our study the motions behind the normal detonation 
waves when the Chapman - Jonguet condition 

IUI +c ==D (2.2) 

holds at the wave front, which means that the detonation wave moves with the velocity of 
sound relative to ita combustion products. The function @ satisfies the usual character 
istic Eq. 

(@It4 -I- Q% + @aus - 1)2 - ce (@,2 + 6>%2 + @a”) = 0 (Z. 3) 

Using (2.2) together with the previoualy made assumptions, we can write (2.3) as 

q = g 
. 

(2.4) 

Equations of the bicharacteristics can be written as 
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(i = 1,2,3) 
(2.5) 

The right null vector of the characteristic matrix of the gas dynamic equations written 

for nf and c, has the form 

r = (Q)1, @‘2, %r T- 1 I2 V R2 + ata + @a) 

therefore we have the following relation for the discontinoities of the direction derivatives 
of the functions uf and o ((91) 

([Hal, [u201, [u3aI, [CO,]) = m (2.6) 

Here (I is some scalar function, and [fm] corresponds, in the case of a weak shock, 
to the difference of two directional derivatives of the function f, taken at both sides of 
the shock (when one side is at rest, we have [fa] = fo in the perturbed flow). 

In the case of a normal detonation wave we have two distinct possibilities. First we 
shall conbider the case when the derivatives of uf and c are finite at the wave front (this 
is a case of secondary importance, since such flows can only oconr behind the plane de- 
tonation waves). Let us put [fo] = fly - fcm, where fta and fan are direction 
derivatives corresponding to two arbitrary flows behind the detonation wave of the given 
form. Jumps in [f@] satisfy (2.6) when f denotes a basic function, and when the derivatives 
are finite, the case of normal detonation can be dealt with similarly to the case of a weak 
shock. 

Let us now introduce new independent variables into the gasdynamic equations 

Ei = Xi (i = 1, 2, 3), &l = Q (21, %t r3) - t P-7) 

Utilising now the fact that the differentiation with respect to &;, 6 and 4; will be 
directed inwards on the characteristic surface, we can carry out operations analogns to 
those performed in [I] (p ar. 3); equation definingo can be written in its final form as 

Here we have used t as a parameter on the bicharacteristic fo’denotes a derivative of 
Q with respect to t), c = const is the velocity of sound and ]u] = const is the modulus of the 
velocity vector on the surface @ = t. Eq. (2.8) is the Bernoulli’s equation and it can always 
be integrated in qaadratures, provided that an explicit expression for A@ as a function of t 
is known along the given bicharacteristic. 

In the case of a weak shock ( ]u] = 0, c = D) Eq. (2.8) becomes 

(J’ + cr + 111 W2) a2 + c2/2 (J A@ = 0 (2.9) 
Let us consider the case when the normal derivatives of uf and o become infinite on 

the detonation wave front. We shall follow [E] (chapt. 6) and represent the first approxi- 
mations of uf and o as 

Here Cp (51, z2, z3, t) = 0 is the equation of the characteristic surface, S (9) is 
a certain generalized function such that S (0) = 0 and the derivative s-1 ((p) of which 
becomes infinite when Cp = 0, the fuuctions gf and g do not vanish and are sufficiently 
smooth on the characteristic surface, while functions qi and q may include weaker singular- 
ities and their limiting values on Cp = 0 coincide with the values of ui and o on the wave 
front. We shall investigate the behavior of the functions gi and g along the bichuacteristics on 



Three-dimensional gas flows adjacent to regions of rest 377 

the surface 9 = 0. It is obvionr, that oatside the surface 9 = 0 (@ = t) functions gir g, 4i, 
and q are not uniquely definable. 

Assuming that the expressions for Uf and c hold in some neighborhood of fp = 0 and 
equating to zero the coefficients of S _-i fq) in the system of gaadynamic equations (as it 
was done in [8] for alinear system), we obtain 

(s*, g2, g3, 8 -2 GD r 
!“.I!;) 

wherecl, (XI, Xz, X8, t) is a scalar function. 
Let us now assnme that two distinct flows behind a detonation wave of the given form, 

are specified by gf*, 8 and gf, g with the corresponding @I)* and a~ respectively. Then, 
multiplying in the usaal manner all equations by the components of the left nnll vector of 
the characteristic matrix, performing the summation and taking, subsequently, the differ- 
ence of two relations obtained for two solntiona with OD* and 0~. we obtain the following 
transport equation for 0~ = ffD* - UD along the bicharacteristic 

Let us now give a geometrical interpretation of ACP. We know that, when a surface is 
given by Eq. x, = F (x1, zJ, then the radii of cnrvatnre R, and R, of the principal normal 
croea sections are defined by 

Obtaining r, t, s, p and q from (2.1) in which we find aa implicit expression for z, as 
a function of xX and x, and using the relation 

& 1 is _ 2Pv - (* + P?*” - (I+ 0 r = DAC1, (2.,i 3) 

Thus A@ = 2H/D where H is the mean curvature of the surface (2.1). 
Let as ffndA#=f(t) al ong the bicharacterfstic for the case of a weak shock. As- 

suming withont loss of generality that c = 1, we can write the Eqs. of bicharacteriatics as 
. 

xi = @iv t‘ = 1 (2.1 ;) 

Since x@k@fk = 0, (bi are constant along any fixed bicharacteriatic. Consequently 
the bicharacterfstics are straight lines in the (xt, r,, xS. &apace. Utilizing the constapcy 
of @f and differentiating A# along the bicharacteristic we obtain, with the help of (2.1). 
the expression 

-(A@*) = (Am -& (@xQ12%3+ ~2@*1fD23 i- @3@31@23) (z.jn) 

Next, nafng (2.1) we can obtain the following expression for the Gaussian curvature 

K = 1 I RIRz = rt - s2 I 1z4 : 

K = i&i& (~1~12~13 + ~2~2~~23 $- g>3@3@23) (2.46) 
Farther, the identitfea obtained by differentiating (2.X) twice with respect to all xi 

and %k and differentiation of K along the bicharacteriotic (2.141, together yield 

(K’) = - A@ K (2.17) 
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Finally, (2.15) and (2.17f together with (2.16) yield the following system of ordinary 
differential equations along a fixed bicbaracteristic for RI (:I and R, (~1: 

(&-)‘=-&&, (&J’=-‘(&t-j.&) (2.18) R&z 

General solution of (2.18) can be written in the form 

H, = t i-c,, R, = t -j-C, 
where Ci denote arbitrary constant*. Inserting into (2.9) 

(2.1!1) 

and integrating the result, we obtain the solution in the general form 

1 
Q= 

I/t 
- - ~jfC/t[([(rT1)In(‘l/t+C~+ I/t+c++Cl (2.20) 

where C is an arbitrary constant. Formula (2.20) defines the principle of decay of partial 

derivatives of the solution with time, on the surface of a weak shock moving through the 
region of rest, in the three-dimensional case. 

Using the Chapman-Jouguet condition, we can reduce the equations of bicharacter- 
istics (2.5) in the cntxe of normal detonation. to 

ii~~ 
‘1= CL)@,, di 

- -- 2. 
dh dh - D 

(i = 1, 2, 3) (2.21) 

Inserting into it 

we obtain, in place of (2.21) and (2.4). 

reepectively, and 

s 

Inserting the expression obtained for A@ into (2.X1) and integrating, we obtain 

c Y-l --- 
OR = c [(t + C,) (t + Co)] D r+l (2.23) 

We ahall show in the next paragraph, that integration of (2.8) is pointlean when 
A@ f 0, while when AQ, ~0, then the solution (2.8) has the form 

aL)=p c+y+.t -* ( ) (2.25) 

3. Let us now investigate the behavior of the partial derivatives of the basic function8 
on the characterfatic anrfaee, when the ffow behfnd a weak shock or a normal detonstion 
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‘wave belongs to the class of double waves. We shall first consider the csse, when the 
smfaue of a weak shock moves throagh ths region of rest. The right null vector r of the 
characteristic matrix csn be written, with the help of (X5), aa 

T= ( co9 cp ) SW, 5, T-_1 
V V 2 > 

(3.1) 

while the vector representing the Iscontinuities of the dfrectional derivatives will be 

Next we find au,/& and ch,/& from (1.3) (by differentiation with respect to t ami 
change to the polar coordinates) for t LI 0, and use (3.1) and (2.6) to obtain the following 
expression for the scalarod corresponding to the doable wave type flow: 

a, = 
1 

(r + 1) tt + Bd (tpf) (3.2) 

It should be noted that B, (9) = con& along a fixed bicharacteristic. Since the 
surface of a weak shock is, in this case, a developable surface, it follows that one of the 
radii of curvature of the principal normal cross sections becomes infinite along any bi- 
characteristic. Expression (2.20) is then replaced by 

a= 1 
+ 

1 

tr + 1) (t t B) A (t + iI)‘/‘-- (‘I i- 1) (t + 4 
(A, B= co&) (3.3) 

For large t we obvioaaly have 

/(T - cJd/ = 0 (t-Y=) 
(3.41 

Let us consider, in the space of (xl, q, xJ, tf, the neighborhood d 
Q (% x2, z3) = t, chamcterised by the fact that the distance p o ! 

of a weak shock 
any paint M of this 

neighborhood along the surface @ = t, will be less or equal to k, i.e.;p (M, a>) < k. 
Let ns now assume that ths perturbations present in the flow behind the weak shock, lag 
behind this shock (i.e. the flow is sufficiently smooth near the shock) and let the shock 
be also sufficiently smooth. Then, for t - 0 (F/a) the difference between the similar 
first order partial derivatives appearing in any two dntiona corresponding to the given 
fom of the shock, will be of the order 0 fk) (see (3.4)). Then, since the limiting values of 
“i and c are identical for all the flows on @ = (, we find, from the Taylor CI~IIIS~OIIS, that 
the basic gasdynamic quantities in Ah coincide with aa accuracy of 0 (P), when 
t - 0 (A+*) . 

Thue, any flow behind a weak shock can be approximated by a double wave flow, 
provided that ths time interval is sufficiently large. 

Note. Using (2.20) we can constract say epherfcal flow near a weak shock travellfa 
through a region of rest which will possess a self-similar flow of the triple wave type f3 f , 
an’d obtain analogous solutions. 

Let us conaider the case of a normal detonation. The boundary value problems for the 
system (1.1) when the flow behind a normal detonation wave belongs to the claes of three- 
dimensional doable waves, were stated in [4]. It was shown, that, in order to constmct the 
flows, we must solve (1.1) with the initial conditions on the line u, - f&f, tbe latter being 
a line on which the system is parabolic. However, this line is not a eharacterfetic, and the 
system (1.1) ia hyperbolic ia the neighborhood of h L f fu,), This problem fa, in general, 
correct, and a aniqae solution cm noaally be foaad in the class of doable waves, corres- 
ponding to the motion of a normal detonation wave represaatad by a developable amfacs at 
any value of t. 

Iiitial conditions on the line u, -f (8,) have the form [4} 
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uta + ua2 + Y2 =z A2 = const, Y = u,Y\y, + %‘u, for xf 

r = cv (y - 1) = coast, I$, + r,u, = - AC for r (3.5) 

x =o, X, z-;: F (X2) for x 

where c ia the velooity of sound, the fanctions f and F are arbitrary and are used to define 
the form of tbs wave at any instant of time. Using (3.5) and 

ulyli + UsY?at = Ulhli + Us&i = 0 (i = 1,2) 

(A = r -t ‘/a (Q + US% + F)) 

which follow from (3.5) and (1.1) we find, from (1.3), that all partial derivatives of the 
functionlr uI and 4, and hence of a, and c, become infinite at the wave front if the wave 
i8 not of a plaae form. 

If WC consider the complete gasdynamic equations and assume that 

ui = ADDi, c = const 

are given on the surface @ (x1, x1, x,) = t of tbe detonation wave which is also a character- 
istic surface, we find that we can calculate all the inward derivatives of uf ad c on the 
surface @ = f and obtain a non-homogeneous system of four linaar equationa defining the 
directional derivative8 u& and CQ, 

The determinant of the coefficients of EQQ and CQ, vanishes, while the rank of the 

matrix of the expanded sy(ltcm, as shown by a direct check, is equal to four, provided that 
the detonation wave is not a plane wave. Thns we ace, that tha fact that the partial dc- 
rivativerr of the bade functions become infinite at the wave front, is the most important one 
in the investigation of the propagation of a nonnal detonation wave. 

We shall use the transport equation (2.11) to correlate the general case of the flow 
behind a detonation wave with the double wave flow, assuming that g.+ and g+ refer, in the 
expressions for Uf ,~d c, to the double wave type flow, v&it gf- an d g- refer to the gen- 
&al type flow (provided that a flow different from the doable wave type exists). Since (2.23) 

bR =@~+--a~-=0 t 
( -2q 

it in clear that the fanctions gj+, S+ and gi-, g’ tend to the common limit with increasing 
b 

Thau we cun alao atatc in the case of a normal detonation, that an arbitrary flow near 
the detonation wave will, at large t, approximate a double wave in the S~PIBC that the prin- 
ciple deaoribing how the derivadven of the b&c fanctiono decrease with increasing dist- 
mce from the wave tent, coincides with the corresponding law dsacribing this phenomenon 
for a double wave: 

If the detonation wave ir, a plane wave, it follows from (2.24) that a flow near such a 
wave will, at large t, approximate the self-similar Riemanniaa wave, since the following 
relation holds 

au 20 
z=-- Cr+ Qt 

i%ta. %latian (2.23) for Crk aen be wad to correlate arbitrary flowo behind an expand- 
ing, nomail l pharfcal detonation wave with the salf-similu solation dae to Zel’dovich [IO] 
of the problem on the expanefon of a detonation wave from a l ingle point. In thief cane WC 
CUD alma auome, for luge L, that an arbitrary flow ta& to a l elfaimilu flow in the above 
8em8e. 
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